First Steps Toward Learning the Language of Mycorrhizal Communication

I’ve already talked about mycorrhizal associations numerous times (here and here), so if you’re not already used to hearing about mycorrhizae, you will if you continue to read this blog.  In this recent paper, entitled “Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza“, published online in the journal Nature, the authors Maillet et al address plant and fungal interactions of arbuscular mycorrhizal associations.  Using the Glomus intraradicesMedicago truncatula model system, the researchers identify diffusible chemical signals produced by the fungus during initiation of the mycorrhizal association with the plant.

It has been hypothesized that both fungi and bacteria interacting with plant roots do so using similar genetic mechanisms.  It has already been shown that rhizobial bacteria – particularly the nitrogen fixing microbes associated with leguminous plants – produce lipochitooligosaccharide (LCO) signals used in the  communication with host plants.  The authors of this study discovered that the fungus Glomus intraradices, like the nitrogen-fixing bacteria, secretes an array of sulfated and non-sulfated simple LCOs which stimulated the formation of arbuscular mycorrhizae in disparately related plants, such as Medicago (Fabaceae), Daucus carota (Wild Carrot; Apiaceae), and Tagetes patula (French Marigold; Asteraceae).  These compounds were found in Glomus intraradices both interacting with plant roots and in free-living resting spores in the soil.

Comparing the genes involved in the transduction of the LCO signals in both rhizobial bacteria associated with legumes and arbuscular mycorrhizal fungi associated with land plants yielded similar gene expression pathways.  In order to validate the role of LCOs in mycorrhizae formation, the researchers genetically engineered non-plant interacting bacteria to produce the LCOs from Glomus.  These engineered bacteria increased mycorrhizae formation in plants already associated with Glomus.  Fungal LCOs were also found to induce root branching, a trait long associated with the formation of mycorrhizae in plants.  There is a nice commentary on this research article located here.